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ABSTRACT

Visually communicating temperature and precipitation climate outlook graphics is challenging because it

requires the viewer to be familiar with probabilities as well as to have the visual literacy to interpret geospatial

forecast uncertainty. In addition, the visualization scientific literature has open questions on which visual

design choices are the most effective at expressing the multidimensionality of uncertain forecasts, leaving

designers with a lack of concrete guidance. Using a two-phase experimental setup, this study shows how

recently developed visualization diagnostic guidelines can be used to iteratively diagnose, redesign, and

test the understandability the U.S. National Oceanic and Atmospheric Administration (NOAA) Climate

Prediction Center (CPC) climate outlooks. In the first phase, visualization diagnostic guidelines were used in

conjunction with interviews and focus groups to identify understandability challenges of existing visual

conventions in temperature and precipitation outlooks. Next, in a randomized control versus experimental

treatment setup, several graphic modifications were produced and tested via an online survey of end users and

the general public. Results show that, overall, end users exhibit a better understanding of outlooks, but some

types of probabilistic color mapping are misunderstood by both end users and the general public, which was

predicted by the diagnostic guidelines. Modifications lead to significant gains in end-user and general public

understanding of climate outlooks, providing additional evidence for the utility of using control versus

treatment testing informed by visualization diagnostics.

1. Introduction

Embedding science in tools for supporting decision-

making and planning and representing it in public

communications has long been a challenge (Dilling and

Lemos 2011; Lemos et al. 2012). This is partly due to the

time and cost required for aligning user needs and ex-

pectations with what the science can provide (Meadow

et al. 2015). Even if this engagement or coproduction

process is managed well, problems still can emerge in
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the design of tools or communications. One particular

source of difficulty is that most scientific information is

infused with many trends or patterns and often contains

significant scientific uncertainty, increasing the dimen-

sions that a tool or communicationmust try to incorporate

(Quinan and Meyer 2016). Given that there only are so

many choices available to visually represent the com-

plexity of scientific information, care must be taken to

match themost important trends or patterns with themost

visually effective design choices (Harold et al. 2016). For

public communication, this problem often is compounded

by designers not knowingwhich trend or pattern is ofmost

interest, and in general, the public has a lower scientific

skill level than expert users (McMahon et al. 2015).

These problems are particularly salient for maps of

extended-range weather (i.e., 6–10 and 8–14days) to

long-lead seasonal forecasts (i.e., 3–4 weeks, 1 month,

and 3 months), which add a geospatial component to

scientific uncertainty. To varying degrees, weather and

seasonal forecasts inform decisions of diverse users

ranging from the general public to private and public

sector decision-makers. For example, disaster man-

agers have used forecasts for flood and drought man-

agement in humanitarian crises (Braman et al. 2013;

Tadesse et al. 2016), the wind energy sector has used

them for forecasting potential energy production

(Roulston et al. 2003; Foley et al. 2012), and the agri-

cultural sector has used them for irrigation decisions and

commodity pricing, among other uses (Clements et al.

2013). While these cases show that forecasts are used to

some extent, three main factors cause them not to be

fully incorporated into decision-making (Changnon and

Vonnhame 1986;Hartmann et al. 2002;White et al. 2017).

First, there might be a mismatch between user needs

and characteristics of the forecast, such as whether the

skill level, lead time, forecast period, weather or climate

variable, and spatial resolution is adequate for making

decisions. Forecasts also might not be easily accessi-

ble or in an understandable format. Additional barriers

can occur if users require additional background in-

formation to assess forecast credibility (Sonka et al.

1992; Changnon et al. 1995; Pulwarty and Redmond

1997; Callahan et al. 1999; Pagano et al. 2002; Rayner

et al. 2005; Lowrey et al. 2009).

Even if there is a reasonable match between forecast

characteristics and user needs, user and institutional

factors can hinder forecast uptake. For example, both

the general public and end users have difficulties rea-

soning with probabilistic information and often request

more forecast accuracy than is needed tomake a decision

that is better than random guessing (Sonka et al. 1992;

Pagano et al. 2002; Steinemann 2006; Wernstedt et al.

2019). Furthermore, users exist within organizations that

set the context for how forecasts are used (Ray andWebb

2016; Simpson et al. 2016). Institutions can be reluctant to

change, and their decision-making structure might not be

compatible with a forecast’s characteristics, especially if

processes do not exist to integrate forecasts with other

types of information used in decision-making. In addi-

tion, the appropriate expertise may not be available at

an organization, either in house or through relationships

with the forecasters (Changnon et al. 1995; Pulwarty and

Redmond 1997; Callahan et al. 1999; Pagano et al. 2001;

Rayner et al. 2005; Lowrey et al. 2009).

While much progress has been made in the usable

science literature on how to align forecast characteristics

with user needs and institutional structure, many open

questions remain, including the impact of visualization

choices on geospatial forecast understandability (White

et al. 2017). In particular, representing geospatial fore-

cast uncertainty is an unsettled topic in practice and

in the research literature (Rautenhaus et al. 2018). This

manifests in the default settings of many forecast visu-

alization software packages deviating from visualization

best practices (Quinan and Meyer 2016). For example,

many forecast visualizations use rainbow color maps,

which are considered a poor choice by the visualization

science community (Borland and Taylor 2007; Stauffer

et al. 2015; Dasgupta et al. 2019). In addition, users often

prefer extraneous detail that hinders understanding

(Hegarty et al. 2009), leading to map conventions that

attempt to convey too much information in one image,

known as visual clutter (Rosenholtz et al. 2007). These

and other deviations from visualization best practice

could greatly hinder understandability, as visualization

is often the first avenue through which users interpret

information embedded in a forecast (Hegarty 2011).

However, making changes to broadly distributed vi-

sualizations is not a trivial task. Forecasting and visual-

ization conventions are embedded in the institutions

that create them, and therefore require time and effort

to change. In addition, users’ interpretations of a visu-

alization are in part dependent on the familiarity that

has been built over time (Harold et al. 2016). Thus,

there is a need to test whether implementing best

practices will lead to a change in understandability of

forecasts and use by decision-makers. Previous work

has touched on separate specific aspects of represent-

ing geospatial and forecast uncertainty (MacEachren

et al. 2005; Kaye et al. 2012). However, to our knowl-

edge, no study has applied recent advances in di-

agnosing visualization problems (Dasgupta et al. 2015)

to a comprehensive assessment of high-profile fore-

casts. Such an approach is important for systematically

identifying visualization issues in products with long

operational histories (Kinkeldey et al. 2014).
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To address this gap, we apply visualization diagnos-

tic guidelines to the National Oceanic and Atmospheric

Administration (NOAA) Climate Prediction Center

(CPC) extended-range and long-lead outlooks and test

the understandability of modified visualizations on the

general public and end users. The results from this

study provide evidence for which modifications im-

prove the understandability of NOAA climate out-

looks, and more generally, which visualization best

practices yield improvements.

2. Background

a. Climate prediction center outlooks

While the U.S. federal government has been pro-

ducing extended-range and long-lead temperature and

precipitation forecasts since the 1940s, the current suite

of products generated by NOAA CPC took their

modern form in the mid-1990s (Barnston et al. 1994;

Barnston et al. 1999). Currently, this includes 6–10-

and 8–14-day extended-range outlooks and 3–4-week,

1-month, and 3-month long-lead outlooks (Fig. 1).

These outlooks complement shorter-time-scale fore-

casts produced by other parts of the National Weather

Service (NWS), such as the Weather Prediction Center

(WPC) and local NWS Weather Forecast Offices

(WFOs). The base set of outlooks from CPC provide

information on the most likely range of predicted

average temperatures or accumulated precipitation,

while other outlook products highlight the potential for

extreme events that have impacts to life and property.

Since their introduction in 1994, a key feature of

NOAA’s climate outlooks is their characterization and

visualization of forecast uncertainty (O’Lenic et al.

2008; Livezey and Timofeyeva 2008). As opposed to

mapping probabilistic temperature and precipitation

amounts, the outlooks use historical climate data as a

reference point for probabilistic-based forecasts. Spe-

cifically, the distribution of historical climate over a

specified 30-yr period is binned into terciles, which are

labeled below, near, and above normal. Using expert

judgment and probabilistic model outputs, forecasters

designate at any point on the map the category that

exceeds 33% probability of occurring. For longer-

range outlooks, if it is determined that below-, near-,

and above-normal categories are equally likely, then

the forecast designation of equal chances is given

(Fig. 1b) (NWS 2018).

Extended-range and long-lead outlooks, which are less

familiar to the general public and many decision-makers,

differ from short range forecasts because they show the

likelihood of a shift in climate conditions over a specific

FIG. 1. Example of (a) 6–10-day precipitation (30May–3 Jun 2017) and (b) 3-month temperature outlooks (January–March 2017). Note

that the shorter-time-scale 6–10-day outlook did not include the ‘‘equal chances’’ category. The 6–10- and 8–14-day outlooks (not shown)

use similar visual conventions, as do 3- and 1-month outlooks (not shown). Source: NOAA CPC, cpc.ncep.noaa.gov.
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timeframe (White et al. 2017). While it accurately

represents forecaster judgment, this particular for-

mat of characterizing geospatial forecast uncertainty

can be confusing to both expert and nonexpert users.

Namely, users often confuse the probability of the

below-, near-, and above-normal categories with a per-

centage decrease or increase in temperature or precipita-

tion (Hartmann et al. 2002; Pagano et al. 2002; Steinemann

2006; Wernstedt et al. 2019).

b. Visualization science

Visualization choices may exacerbate the difficulty

users have in interpreting different forecast types

that use the same conventions. Shorter-range weather

forecasts, which are more familiar to the general pub-

lic, display likely temperature and precipitation values

or the probability of specific values occurring on a

particular day. These visualizations follow standard

conventions, such as warm colors representing warmer

temperatures (White et al. 2017). Despite this sub-

stantial difference in forecast characteristics, many of

the same short-range visual conventions are used in

climate outlooks to indicate whether conditions

are forecasted to be below-, near-, or above-normal

categories. This may exacerbate observed user confu-

sion over how to interpret extended-range and long-

lead forecasts (Pagano et al. 2002; Hartmann et al.

2002; Steinemann 2006; Wernstedt et al. 2019) be-

cause red/hot-color and blue/cold-color metaphors

are deeply embedded in user expectations (Ho

et al. 2014).

How to more effectively represent below-, near-, or

above-normal categories is not evident because repre-

senting geospatial uncertainty is an open question in

visualization science for a few reasons (MacEachren

et al. 2005; Rautenhaus et al. 2018). Part of the issue is

that the concept of uncertainty in geospatial represen-

tations includes many dimensions. Uncertainty in the

mapped data can occur during acquisition (e.g., from a

satellite signal or weather model), the transformation

of the data, and visualization (e.g., from interpolation)

(Pang et al. 1997). Also, uncertainty can refer to not

knowing the true value of a pixel (as in the CPC out-

looks), the location of a feature such as a stream or

building, and other properties (Buttenfield and Beard

1994; Thomson et al. 2005; Potter et al. 2012).

Many options exist for how to visualize geospatial

uncertainty (Kaye et al. 2012). Separate maps can be

used for the variable of interest and a measure of

its uncertainty, or both can be shown on the same

map as one composite variable or different variables

(MacEachren 1992). Once the number of maps

and variables are chosen, still more choices exist

for the visual variables: location, size, color value

(darkness/lightness), texture/grain, color hue, orien-

tation, shape, color saturation (grayness), and focus

(Bertin 1983; Morrison 1984; MacEachren 2004).

Choosing the right set for multidimensional data

features can be a challenge, as different visual vari-

ables draw more visual attention than others and in-

teract with each other in unexpected ways (Wolfe and

Horowitz 2004, 2017).

The specific type of geospatial uncertainty repre-

sented in CPC outlooks, a two-dimensional scalar, has

received significant attention in the literature. Initial

studies hypothesized that color saturation would be an

effective visual variable for uncertainty (MacEachren

et al. 1998). While users in some studies preferred

saturation as a representation of uncertainty, it was

found to be less effective than other visual variables

such as color value, texture, and focus (Schweitzer and

Goodchild 1992; MacEachren et al. 1998; Leitner and

Buttenfield 2000; Edwards and Nelson 2001; Retchless

and Brewer 2016). This lack of effectiveness is partly

due to color saturation not efficaciously directing

visual attention when other color properties such as

hue and value are used at the same time (Retchless and

Brewer 2016).

c. Diagnostic visualization guidelines

Concepts such as directing visual attention have been

central to more general diagnostic methods in visuali-

zation science, which seek to provide comprehensive

visualization guidelines based on the synthesis of evi-

dence and insights from the practitioner and research

communities (Hegarty 2011; Dasgupta et al. 2015;

Harold et al. 2016). Central to these guidelines is a

perception- and cognition-based understanding of how

users perceive and interpret images. This account em-

phasizes the cyclical interaction of bottom-up and top-

down processing (Hegarty et al. 2010; Hegarty 2011).

Bottom-up processing describes the direction of visual

attention due to the properties of the image, such as

color and shape (Wolfe and Horowitz 2004, 2017). In

contrast, top-down processing refers to the direction of

attention due to users’ expectations and prior knowl-

edge (Gilbert and Li 2013). These two types of pro-

cessing iteratively work to create and refine a mental

representation of the image, which is compared to prior

knowledge. If problems exist in visualization de-

sign, information can be misinterpreted or inefficiently

processed. In this study, we focus on the diagnostic

method outlined in Dasgupta et al. (2015), which is

based on preventing five consequences of visualization

design problems: misinterpretation, inaccuracy, lack of

expressiveness, inefficiency, and lack of emphasis.
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Misinterpretation is the most severe consequence as

the user is drawing an incorrect inference from the vi-

sualization. Misinterpretation can occur, for example,

if the same visual variable is assigned to more than one

data feature, leading to an ambiguous interpretation.

A related consequence is an inaccurate inference.

While a user might correctly interpret one quantity as

greater than another, design problems, such as using

the wrong chart type, can estimate that difference as

too large or too small. A lack of expressiveness occurs

when the design does not clearly indicate the intent of

the visualization. For example, if identifying a specific

pattern or trend is the intent of the image, then the

most effective chart types and visual variables used

should direct attention to that specific pattern or trend

and not another less important one. A visualization that

leads to a correct and accurate interpretation and ex-

presses the underlying datawell can still suffer frombeing

inefficient or lack emphasis. Inefficiencies occur when

design, for example, creates visual clutter or overly com-

plicated visual comparison tasks. Lack of emphasis occurs

when auxiliary elements, such as legends, grids, or an-

notations, do not highlight essential areas of the image.

Consequences are linked to visual design problems

that are grouped into a hierarchical taxonomy (Table 1).

At the top level, two design stages are delineated: en-

coding and decoding. Problems associated with the en-

coding stage are related to choices made by the image

designer to map data features to visual features.

It encompasses problem types of choosing inappropriate

chart types, visual variables, levels of detail, and color

maps. In contrast, decoding-stage problems are related

to how the image interacts with a user’s perceptive and

cognitive abilities. It encompasses problem types of

too much visual clutter, scale or projection distortion,

requiring a visual comparison task that is too complex,

and ineffective auxiliary items such as legends. In the

Dasgupta et al. (2015) taxonomy, more specific problem

causes are delineated under each problem type. For

example, inappropriate visual variables can stem from

choosing an ineffective visual variable given the intent

of the visualization or ambiguity with respect to map-

ping data features to visual variables. In the following,

we describe how this diagnostic method is used in our

study of CPC outlook understandability.

3. Methods

This study is a performance assessment of CPC

temperature and precipitation outlooks. As such, it

measures how well users understand the outlooks

through task-oriented controlled experiments ad-

ministered via online surveys, which is a common

study design in the visualization literature (Lam et al.

2012; Kinkeldey et al. 2014). The Dasgupta et al.

(2015) taxonomy-based diagnostic guidelines are used

in two ways. First, they are used to generate hypotheses

about how CPC outlook visualizations might be mis-

interpreted, and second, as a way to guide visualization

redesign.

To check the reasonableness of the hypothesized de-

sign problems, we first met with eight federal govern-

ment experts that were identified by CPC staff. These

participants were chosen based on their extensive ex-

perience with the outlooks and knowledge of end users.

The semistructured interviews ranged in length from 40

to 90min; after the interview, participants were sent a

transcript and allowed to review and remark on their

comments. The content of the interviews focused on

(i) user communities and their needs and (ii) challenges

in interpreting the outlooks. The questions were open

ended, asking interviewees to relate what they knew

about how end-user communities utilized the out-

looks. In addition, interviewees were asked to describe

extended-range and long-lead outlooks along with what

they liked and did not like about them and what they

would do to improve them. The results of these initial

interviews were used to refine the hypothesized design

problems.

Next, a set of questions was developed to test whether

the hypothesized design problems led to misinter-

pretation of the outlooks. These questions were

TABLE 1. Diagnostic guideline taxonomy from Dasgupta et al.

(2015).

Problem

stage Problem type Cause of problem

Encoding Chart appropriateness Chart mismatch

Chart configuration

Visual variable Visual variable choice

Visual variable ambiguity

Level of detail Granularity

Jaggedness

Color map Quantitative color mapping

Qualitative color mapping

Decoding Clutter Overlap

Color mixing

Distortion Scale inconsistency

Projection error

Comparison complexity Superposition overload

Lack of explicit encoding

Communication gap Legend

Annotation

Grid
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incorporated into a broader instrument that was used

in individual interviews, focus groups, and online

surveys. Additional questions covered users’ decision

context and familiarity and use of extended-range

and long-lead outlooks. In consultation with CPC,

four user group sectors were targeted: agriculture,

emergency management, water resources, and energy.

Participants were identified by CPC and through web

searches, referrals from colleagues, and snowball

sampling (i.e., a participant suggested a colleague to

participate) (Atkinson and Flint 2004), leading to a

sample size of 32 focus group and interview partici-

pants and 131 survey respondents. Focus groups varied

in size but were structured so that participants were

given time to consider their responses individually be-

fore sharing with the group, which is a common focus

group structure (Krueger and Casey 2015). The un-

derstandability problems identified in the interviews,

focus groups, and surveys were then used to inform final

control versus treatment testing.

Final testing included two rounds of online survey

testing using a randomized control versus treatment

design, where redesigned outlooks were informed by

diagnostic guidelines used in first assessing the out-

look images. The first round tested differences in how

well end-user and general public populations un-

derstood two redesigned outlooks (treatments) versus

the original (control) visualization. End users (n 5
427) were identified based on consultation with CPC,

snowball sampling, web searches, and a survey link on

CPC’s website. The general public sample (n 5 658)

was taken from a randomU.S.-based pool provided by

survey company ROI Rocket (roirocket.com) that

was balanced by gender and restricted to having a

college education. Based on these results, a final re-

designed image was tested with the general public

(n5 223), for a total general public sample size of 881.

The division of respondents by image is shown in

Table A1 in appendix A.

Each respondent was randomly assigned either the

control (Fig. 2a) or one of the modified outlooks

(Figs. 2b–d). The control was taken from an archival

forecast, as there was a desire for CPC to have a baseline

measurement of how users understood an outlook as is,

even though these outlooks had not issued near-normal

forecasts since 2006. This design choice necessitated

constructing hypothetical outlooks for the treatments

because there was a need for CPC to test the effective-

ness of different near-normal visualizations. Even

though this constraint created two separate forecasts,

forecasts across the treatments were the same and the

interpretive tasks for the control and treatments were

the same. In addition, survey questions were designed to

minimize the effect of the specific forecast on user

understandability.

Two types of multiple-choice understandability

questions were posed. Both were designed to be an-

swered independent of the forecast shown. One type

asks about specific visual variables used on a map, such

as the meaning of white color mapping in the United

States or the meaning of the warm color scale. The other

type of question is more task specific. For each category,

respondents were asked to give the probability of the

category in a specific state, such as the probability of

above normal in Maine (for Fig. 2a) or Washington

(Figs. 2b–d). Although the location of the state is dif-

ferent, the question and potential answers are the same.

Any effect on user responses would be introduced if a

user is more familiar with one particular state over an-

other. Given the location of a state should be familiar to

end users, and is easily referenced with an internet

search, we believe this effect is minimal.

Additional questions were asked about familiarity,

background on how the outlooks were produced, and

demographic information. The background questions

were used to test whether user knowledge of the

outlooks was predictive of understanding their con-

tent. Such objective measures of background knowl-

edge, as opposed to more subjective measures such

as confidence or familiarity, are thought to be bet-

ter predictors of understandability (Lam et al. 2012;

Kinkeldey et al. 2014).

The effect of background knowledge on the odds of

answering a question correctly can be measured by ex-

amining the slope parameters from a logit regression

(Wooldridge 2016). Here the independent variables

are the number of questions answered correctly (BK)

and the number of questions answered ‘‘I don’t

know’’ (UNC) and the dependent variable y is 1 or 0

depending on whether the question was answered

correctly or not, respectively. As detailed in appendix

B, we test the robustness of the effect of background

knowledge by specifying a variety of equation struc-

tures, with each one embodying a hypothesized re-

lationship between the dependent and independent

variables. The main equation we report here controls

for the type of modification i (MOD) and whether or

not the respondent is an end user or part of the gen-

eral public (EX):

y5b
0
1�

3

i51

b
i
MOD

i
1b

4
EX1�

6

i55

b
i
EX3MOD

i

1b
7
BK1b

8
EX3BK1b

9
UNC1b

10
EX3UNC

1b
11
BK3UNC1b

12
EX3BK3UNC. (1)
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Because EX is a binary variable that takes the values 0

and 1 when a respondent is part of the general public or

an end user, respectively, the coefficients on terms with

EX can be interpreted as a test of whether being an end

user matters or not. For example, if B8 is statistically

significant, then background knowledge affects the

ability to interpret an outlook differently for an end user

relative to the general public.

In addition to testing the statistical significance of

the slope coefficients, the joint significance of the in-

teraction terms are tested using a likelihood ratio test

(Wooldridge 2016). In the results that follow, we report

FIG. 2. NOAA CPC climate temperature outlooks for (a) original graphical approach presented by NOAA; (b) simplified represen-

tation of near-normal conditions using grayscale and updated legend; (c) discrete legend that represents normal using grayscale, aggre-

gated probability ranges, and qualitative probability descriptors in the legend; and (d) combined approach addressing all five

understandability diagnoses. Final images tested with end users are in (a)–(c) and with the general public are in(a)–(d). Note that the

maximum probability value for above- or below-normal temperatures is 94%. Sources are (a) NOAA CPC (cpc.ncep.noaa.gov) and

(b)–(d) hypothetical forecasts developed by authors.
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the slope coefficients for Eq. (1) only if the interaction

terms are jointly significant.

4. Results

a. Diagnosis and redesign

As described in the methods, diagnosis of outlook vi-

sualization problems relied on the convergence of guid-

ance from the Dasgupta et al. (2015) taxonomy and

preliminary interviews, focus groups, and online surveys.

Similar themes emerged from diagnostic guidance, experts,

and end users, which may be summarized into five

diagnoses (Table 2). The importance of these visual

problems to correctly interpreting the outlooks was then

tested through online surveys of end users and general

public (section 4b). Almost two-thirds of the focus group

participants were from the emergency management or

agriculture sectors. Similarly, the online surveys of endusers

were composed of about two-thirds emergency manage-

ment and one-quarter agriculture, with the remaining

spread across the water resources and energy sectors.

Among focus group participants, the meaning of the

color maps across the United States and Canada was

identified as a potential source of confusion for non-

expert users. This was corroborated by initial end-user

survey results. Depending on the specific outlook, 20%–

30% of end users misidentified white color mapping in

Canada to mean near-normal or equal chances. This

finding is not surprising given that the visualization

diagnosis literature predicts that visual variable ambigu-

ity will cause misinterpretation (Dasgupta et al. 2015).

Understanding white color mapping in the United

States is dependent on whether white is assigned to

mean equal chances or near normal. For outlooks that

use white to denote equal chances, 89%–98% (de-

pending on the outlook) of end users correctly iden-

tified it as such. In contrast, extended-range outlooks,

which use white to denote near normal, only 71%–

77% of end users correctly identified the meaning of

the color maps. Since the extended-range outlooks do

not include equal chances as an outlook category,

confusion for these outlooks may be more associated

with misunderstanding of what ‘‘near normal’’ means

and how it is visualized. In terms of visualization,

white could be interpreted as the lowest certainty level

of the below- or above-normal category, as opposed to

an entirely separate near-normal category. To avoid

this problem, Kaye et al. (2012) suggest using a pale

yellow color. Independent of this study and after ini-

tial survey work was completed, CPC replaced white

with gray shading for near normal on extended-range

outlooks.

For long-lead outlooks, about half of survey re-

spondents correctly interpreted gray shading as the

probability of the near-normal category, with the ma-

jority of other respondents incorrectly identifying gray

as a certainty of near normal, indicating a broader

problem with the understanding of near normal. At the

time of the study, using a grayscale for the near-normal

category was a fairly new change to the suite of out-

looks, which could contribute to lower understanding.

Visually, this misunderstanding could originate in a few

areas. One explanation is that there is a communication

gap in the legend, as the placement of the different

scales could imply a continuous range when in fact

there are three separate scales, separated by white

blocks the same size as scale values. A user could

misinterpret these white blocks as being part of the

TABLE 2. Summary of design problems and their diagnoses from the literature.

Design problem Diagnosesa Possible remedies

White color mapping in Canada and U.S. Visual variable ambiguity Choose different colors to represent

different information types; remove

Canada from map

Color mapping and conceptual

representation of near normal

Quantitative mapping,

communication gap (legend)

Choose different color; redesign legend

Misinterpreting probability ranges and

precise probabilities

Communication gap (legend and

annotation)

Redesign legend

Climatology contour linesb Superposition overload Remove climatology contour lines

Difficulty finding and reading map

annotations

Communication gap

(annotation)

Add notations for all information

represented in graphic, change font

size/type; move text or remove visual

clutter, such as locations where there is

no outlook presented (e.g., islands)

a Diagnoses use terms from Dasgupta et al. (2015).
b Not all outlooks used climatology contour lines.

124 WEATHER , CL IMATE , AND SOC IETY VOLUME 12



blue, gray, or red scales, a similar problem with the

extended-range outlooks.

Understandability of below and above normal cate-

gories were in the range of 65%–77%, with no discern-

able trend across outlook types. The primary source of

misunderstanding was interpreting probability ranges

(e.g., 30%–40%) as a precise probability (e.g., 30%).

Two potential sources of confusion are the legends

and contour/color combinations. Legends, which are

used in the extended-range and long-lead outlooks, are

drawn in a way could be interpreted as continuous:

color blocks have no gaps among them, and edges are

labeled with precise probability values as opposed to

ranges. In addition, contours are also not explicitly

drawn or labeled as ranges. Focus group participants

also thought that it would be easy for the unfamiliar

user to interpret the outlooks as being proportional to

the magnitude (or change in magnitude) of tempera-

ture and precipitation as opposed to the likelihood of

temperature or precipitation being below, near, or

above normal, which has occurred in other studies of

forecast products (Hartmann et al. 2002; Pagano et al.

2002; Steinemann 2006; Wernstedt et al. 2019).

Survey and focus group results identified a group

of problems associated with visual elements that

contributed to difficulties in visually processing the out-

looks. Climatology lines in the extended-range forecasts

were frequently overlooked by respondents, and when

noticed, their use was found to be difficult as they were

superimposed with contour lines and state boundaries.

This problem, referred to as superposition overload

(Dasgupta et al. 2015), can be remedied by reducing the

number of overlapping visual variables and visual tasks

required of users. Respondents also identified problems

with being able to read explanatory text and labels for

probability contour lines and descriptive text toward the

bottom of all the graphics. These are displayed in small,

blocky font and are superimposed over Caribbean islands

that are not part of the official outlook.

Given the identified design problems (Table 2),

three modified images, tested in two rounds (round 1:

Figs. 2b,c; round 2: Fig. 2d), were created to test the

effectiveness of the diagnoses. The simplified normal

image (Fig. 2b) focused on confusion of what white and

gray color mapping meant by reducing the range of the

grayscale to only include what is empirically feasible in

the legend and adding space among the legend scales. The

discrete legend image (Fig. 2c) introduces more noticeable

modifications by decreasing the precision of the color-

mapped scales to two colors each for below and above

normal and one for near normal. In addition, scale color

maps are labeled with ranges (e.g., 33%–50%) and quali-

tative probability language (e.g., ‘‘leaning below normal’’).

Using test results from these two images, a final image

was created using modifications from the simplified

normal and discrete legend images. This visual, labeled

combined (Fig. 2d), merged the discretized nature of the

discrete legend image with themore precise color map of

the simplified normal image. In addition, the legend is

stacked vertically in three columns to emphasize that the

scales are not separate and not continuous. All images

included a more simplified background map that did not

include climatology contour lines. A summary of the

modifications by image and design problem is provided

in Table 3.

b. Efficacy of redesigned images

Of the 427 end users surveyed, about half were working

in the agriculture, forestry, and land-management sectors.

About 20% and 10% worked in emergency management

and water resources, respectively. The remaining 30% of

respondents were spread across the energy, government,

education, and weather forecasting sectors. Of the 881

general public respondents surveyed, about half had an

associate’s or bachelor’s degree as their highest level of

education. About 20% had a graduate degree, and the

remaining attended but did not finish college.

In the original outlook images, white color mapping in

Canada and United States are assigned two different

meanings: no outlook in Canada and equal chances in the

United States. By a largemargin (difference of 45%), end

users are more adept than the public at making the dis-

tinction that white color mapping in Canada means no

outlook (Fig. 3a). In the original image, about two-thirds

of the public misidentifies white color mapping in Canada

as meaning equal chances or near-normal outlook. The

simplified normal and discrete legend modifications lead

to large improvements in understandability for the public,

but the increases were not significant for the end users.

Both modifications provide less cluttered legends, which

might serve to make clearer the meaning of white color

mapping in Canada. Since Canada was removed from the

combined modification, no question was asked about

white color mapping outside the United States.

Compared to the interpretation of white color map-

ping in Canada, the public has a much higher under-

standing of white color mapping in the United States,

albeit still less so than end users (Fig. 3b). The sim-

plified normal and discrete legend modifications yield

statistically significant decreases in understandability

for end users and marginal decreases for the public.

The combined modification, which removed Canada

from the map and explicitly labeled white color

mapping in the legend, showed statistically significant

improvement in public understanding.While it is clear

that removing Canada has a positive impact due to
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removing the ambiguity of white color mapping, there

is not a clear explanation for the slight decrease in

understanding for the simplified normal and discrete

legendmodifications in Fig. 3b. Further experiments with

higher sample sizes and modified experimental design

could be done to probe whether the effect is robust.

There is significant confusion among both end users

and the public on the meaning of gray color mapping

(Fig. 4a). The most common misinterpretation is that it

corresponds to intensity: a region with gray shading will

have near-normal temperatures as opposed to a chance

of near-normal temperatures. Part of this could come

from difficulty in conceptualizing near normal as

probabilistic, whereas the probability of below or above

normal might have a more intuitive interpretation. In

addition, previous versions of the publicly available

outlooks did not map out differing probabilities of near

normal. As a result, end users would be unfamiliar with

interpreting gray shading, putting on them a similar level

of familiarity as the general public.

The modifications, which use the legend to clarify the

probabilistic meaning of near normal in relation to be-

low and above normal, provide some improvement.

Especially significant are the increases in understand-

ability for the discrete legend and combinedmodifications.

Both of these modifications use qualitative uncertainty

FIG. 3. Fraction of respondents to correctly interpret white color mapping in (a) Canada and (b) U.S. An asterisk (*) indicates a significant

(p , 0.05) difference in understanding from the original.

TABLE 3. Summary of outlook modifications.

Design problem

Modifications

Simplified normal Discrete legend Combined

White color mapping in

Canada and U.S.

Add more space between

color maps so that white

does not appear as part of

the scales

Add more space between

color maps so that white

does not appear as part of

the scales

White is explicitly labeled as

equal chances and remove

Canada from map

Color mapping and

conceptual

representation of

near normal

Reduce range of near-normal

color map

Reduce precision of near-

normal color map and label

with qualitative language

and probability range

Reduce range of near-normal

color map and label with

qualitative language and

probability range

Misinterpreting probability

ranges and precise

probabilities

Provide more space

between near-normal

and below-/above-normal

color maps

Reduce precision of color

maps and label with

qualitative language and

probability range

Rearrange direction of color

maps and label with

qualitative language and

probability range

Climatology contour lines Remove climatology

contour lines

Remove climatology contour

lines

Remove climatology contour

lines

Difficulty finding and

reading map annotations

— — Remove Caribbean islands

from map, change font

type/size, and reposition title
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language that might be helpful in reinforcing the prob-

abilistic nature of the outlook.

These levels of comprehension are largely corrobo-

rated by how well respondents perform at interpreting a

state-specific near-normal outlook, which was only per-

formed on the modifications (Fig. 4b). For this task, re-

spondents were asked to provide the outlook for the state

of South Carolina. Those who saw the simplified normal

and combinedmodifications performed fairly well at this

task. However, those who saw the discrete legend modi-

fication (Fig. 2c) consistently misinterpreted the outlook.

For this modification, fewer colors were used on its scale,

requiring users to rely on contour lines to make more

precise outlook readings. These results show that a vast

majority of respondents used color as their primary cue

for outlook interpretation, which corresponds to what

the visualization literature would predict (Wolfe and

Horowitz 2004, 2017).

Compared to gray shading of near normal, warm–cool

shading is much better understood by both end users

and the public (Ho et al. 2014) (Fig. 5). Although, as with

other aspects of understandability, a gap remains between

the two groups. Modifications appear to have marginal

effects, with the exception of the combined modification,

which yields statistically significant less understandability

than the original. As discussed earlier, the overall higher

levels of understandability of warm–cool shading than gray

near-normal shading might be due to the inherent ease of

conceptualizing above–below as probabilistic.

When asked to correctly interpret a below- or above-

normal category in a specific state (Figs. 5b,d), a similar

pattern emerges for the discrete legend modification. Re-

spondents are primarily using color to guide inter-

pretation as opposed to contour lines. The simplified

normal modification provides improvements in

understandability, which are almost significant for

above-normal outlooks and significant for below-

normal outlooks.

c. Understandability factors

In addition to questions gauging end-user and gen-

eral public understanding of the outlook visualizations,

the online survey asked respondents three background

questions about how the temperature and precipitation

probabilities were created. Unsurprisingly, end users

answered the questions correctly at a greater rate: 64%

of end users answered at least one question correctly

compared to only 43% of the general public (Fig. 6a).

Large differences are shown in understanding how

many years of data make up the climate baseline, with

44% of end users answering correctly versus 9% of the

general public (Fig. 6b). Similar levels, 35% and 29%

respectively, of end users and the general public un-

derstood that the below-, near-, and above-normal

categories were calculated by dividing the climate

baseline into terciles. However, only 19% of the gen-

eral public understood how locations on the outlook

map are designated below, near, or above normal,

versus 35% of the end-user respondents. Despite large

differences in how well end user and the public an-

swered background questions, the average number of

‘‘I don’t know’’ answers were remarkably similar at

1.41 and 1.49 out of 3, respectively.

A few main patterns suggest that end users and the

general public interact differently with the outlook im-

ages (Table 4). Given that top-down processing of an

image involves preexisting user expectations of a

visualization, this is not surprising (Hegarty 2011).

Foremost, background knowledge figures much more

prominently for end users than the public. All of the BK

FIG. 4. Fraction of respondents to correctly interpret (a) gray color mapping and (b) near-normal category in a specific state. An asterisk

(*) indicates a significant (p , 0.05) difference in understanding from the original.
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slope coefficients (B7 1 B8) are positive, and all but one

are statistically significant (p , 0.05). In comparison,

only one BK slope coefficient is statistically significant

for the public. A positive slope coefficient indicates that

more background knowledge increases the odds of un-

derstanding the outlook.

Second, uncertainty is much more of a factor for

the public than for end users, and for some ques-

tions it appears to interact with background knowl-

edge individually and through the interaction term.

Even though many of the public slope coefficients

are not individually significant, the ones included in the

table are jointly significant, meaning that in total their

interaction is statistically significant. This is reinforced

by a large difference in the Spearman correlation co-

efficients r between BK and UNC, with r for end users

and the public of 20.83 and 20.60, respectively. This

indicates a weaker relationship between self-assessed and

actual ability for the general public; a correlation of 21

would indicate perfect self-assessment. It is noteworthy

that this entanglement of BK andUNC also shows up for

end users when answering a question about gray color

mapping. This is the question with the lowest under-

standability, presumably because of lack of familiarity

with using a scale for the near-normal category.

5. Discussion

Our results show the efficacy of image modifica-

tions based on the visualization diagnosis literature

(Dasgupta et al. 2015). Of the diagnoses tested (first

three rows in Table 2), all were shown to affect un-

derstandability. For example, visual variable ambiguity

is one of the most serious visualization problems be-

cause users might misinterpret or confuse one variable

for another. Our results show this occurs for white color

mapping in Canada and the United States, and that

removing ambiguity has a large effect on improving un-

derstandability (Fig. 3) for the general public. Similarly,

the literature predicts that confusion might occur in

FIG. 5. Fraction of respondents to correctly interpret (a) warm color mapping, (b) above-normal category in a specific state, (c) cool

color mapping, and (d) below normal category in a specific state. An asterisk (*) indicates a significant (p , 0.05) difference in un-

derstanding from the original.
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interpreting the below-, near-, and above-normal color

maps because there is a communication gap resulting

from them being aligned in a way that might imply a

single linear scale and precise increments in probability

instead of probability ranges. Redesigning the legends

to emphasize that near normal and below/above normal

are separate scales of probability ranges instead of a

single continuous probability scale improved end-user

and general public understandability (Figs. 4a and 5b,d).

Both of these modifications, as well as all others in

Table 3, were collectively prototyped and tested in the

combined image (Fig. 2d), which resulted in the most

comprehensive improvement in understandability of the

modifications tested (Fig. 2).

The difference in how end users and the general

public understand the outlook images highlights the

dual nature of how users comprehend an image. The

visualization science literature emphasizes that images

are easier (harder) to understand if viewer expectations

of the visualization converge (diverge) (Hegarty 2011;

Harold et al. 2016). This phenomenon occurs because

viewing and interpreting an image is an iterative process

that involves (i) attraction of visual attention and (ii)

comprehension of viewed information. The significance

of these coupled processes is that many avenues may

exist for improving a user’s scientific visual under-

standing and that the most efficient and/or effective

choice may depend on the characteristics of the user. In

this study, we have primarily focused on modifying im-

ages, as opposed to improving visiospatial ability or user

background knowledge. Nevertheless, our results in-

tersect with these user-centric properties.

For example, improvement in public understanding of

white color mapping in the United States is slightly

offset by a decrease in end-user understanding, which

could be tied to end users’ more entrenched expec-

tations of how an outlook legend is structured. Some

user attributes, however, are more general as both end

FIG. 6. Comparison of end-user and general public responses to outlook background questions. (a) Distribution of number of correct

responses. (b) Fraction of correct answers by specific background question.

TABLE 4. Slope coefficients for background knowledge (BK) and uncertainty (UNC). Methods for populating table are listed in

appendix B. Blank cells indicate that slope coefficient was not necessary for interpreting results. Asterisks indicate statistical significance:

* p , 0.05; ** p , 0.01; *** p , 0.001.

Modifications

Public End user

BK UNC BK 3 UNC BK UNC BK 3 UNC

White color mapping in Canada 0.28*** 0.82***

White color mapping in U.S. 0.18 0.35* 0.84* 0.14

Gray color mapping 0.67*** 0.34*

Warm color mapping 0.14 0.11 0.23 1.0*** 20.32

Cool color mapping 0.18* 0.32* 0.48 0.10

Above normal 0.15 0.14 0.34* 0.96*** 20.10

Below normal 0.38*** 0.20* 0.43*

Equal chances 0.15 0.15 0.24 1.1* 20.48
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users and the general public had poor performance

interpreting below, near, and above normal questions

for the discretized legend modification. This outcome

is linked to so-called Gestalt laws, where users perceive

differences in color as primary to other differences de-

noted by contour lines or other grouping types such as

shape or size (Wolfe and Horowitz 2004, 2017).

While this research reinforces common advice from

the literature, such as not trying to explain too many

patterns in one image and matching the number visual

and data variables, there is a need for more experi-

mental studies. One direction more directly addresses

the issue of whether blue, gray, and red are the most

effective color choices for below, near, and above

normal. There are reasons to believe a different hue

such as yellow might better convey the three category

nature of the outlooks given that gray and color satura-

tion is frequently associated with overall uncertainty

(Kaye et al. 2012). The number of discrete categories to

represent uncertainty is also an important issue as it af-

fects the complexity of the visualization (Kinkeldey et al.

2014). CPC has recently created an experimental two-

category 3–4-week outlook that does not include near

normal in the visualization. It is an open question as to

whether a change in understandability would occur from

applying this format to other forecast products.

In addition, studies that focus on nonvisual ele-

ments are needed, including accompanying captions,

key points, and text. Research on these factors can

be accomplished by isolating and testing (i) specific

modifications based on the visualization literature and

(ii) modifications based on visiospatial ability and user

expectations. The latter can be especially crucial for

legacy scientific visualizations, such as the NOAA

CPC outlooks and other government data products,

where users have long-standing expectations and ex-

perience that would need to be considered when

redesigning such high-profile graphics.

Ultimately, continued research along these lines

can serve to produce more comprehensive diagnostic

guidance for combinations of visual and associated

text-based changes. This guidance can be important

in cases, such as gray color mapping and near normal,

where visual modifications lead to improvements, but

additional gains in understanding are potentially left

unrealized due to unchanged nonvisual elements. Ad-

ditionally, expanding visualization research to dynamic

or user-controlled graphics or decision support systems

would address improved graphics communication

across a diversity of platforms. This work demonstrates

the importance of experimental coproduced decision

support research to improve understandability and

better support the use of evidence in decision-making.
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APPENDIX A

Sample Size Determination

Table A1 lists sample sizes used in phase 2 online

survey testing. Using power analysis, sample sizes were

chosen to be able to detect changes in understand-

ability greater than 0.15 with a p , 0.05. Therefore,

small changes in understandability might be significant

if a larger sample size is used.

APPENDIX B

Statistical Regression Analysis

Tables B1 and B2 show the slope coefficients for the

logit regression in Eq. (1). Table B1 shows the version

of the equation with interaction terms estimated.

The last column indicates whether the interaction

terms are jointly significant (p , 0.05). Table B2

shows slope coefficient estimates of a version of Eq.

(1) without interaction terms.

Table 4 in the main text, which summarizes the effect

of background understanding and uncertainty on the

probability of answering a visualization question cor-

rectly, is populated with a mix of coefficients from

Tables B1 and B2. If the interaction terms are not

jointly significant or one of the terms is not individu-

ally significant, then slope coefficients from Table B2

are used. Coefficients with p . 0.05 are left blank.

Otherwise, the slope coefficients are from Table B1.

Both interaction terms are included if they are jointly

significant, even if they are individual not significant.

For rows where interaction terms are shown, non-

interaction terms are shown if they are significant in

Table B1, or if they are significant in Table B2.We include

TABLE A1. Sample size by modification.

Public End user

Original 225 58

Discrete legend 222 184

Simplified normal 211 185

Combined 223 —

Total 881 427
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terms that are significant in Table B2 to account for joint

significance among noninteraction and interaction terms.
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